

GoInstruments for .NET
 Instruments Library

for GoDiagram for .NET

User Guide

This guide provides information on using the classes provided in the
GoInstrumentsTM for Microsoft® .NET library that is an add-on to GoDiagramTM for
Microsoft® .NET.

September 2018

Northwoods Software Corporation
142 Main St.

Nashua, NH 03060

http://www.nwoods.com

http://www.nwoods.com/

 ii

Copyright © 1999-2018 Northwoods Software Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise without the prior written permission of the
publisher.

Northwoods Software Corporation makes no representations that the use of its
products in the manner described in this publication will not infringe on existing or
future patent rights, nor do the descriptions contained in this publication imply the
granting of licenses to make, use, or sell equipment or software in accordance with the
description.

Possession, use, or copying of the software described in this publication is authorized
only pursuant to a valid written license from Northwoods or an authorized sublicensor.

Neither Northwoods Software Corporation nor its employees are responsible for any
errors that may appear in this publication. The information in this publication is subject
to change without notice.

The following are trademarks of Northwoods Software Corporation: Northwoods
Software, GoDiagram, GoLayout, GoInstruments, JGo, GO++, Sanscript, Flowgram, the
Northwoods logo, and Fully Visual Programming.

All other trademarks and servicemarks are property of their respective holders.

 3

PREFACE

Purpose of this guide:

This guide provides an overview of GoInstruments for .NET, a .NET class library
containing classes used to implement dials, gauges or meters in a GoDiagram
for .NET document. Versions of GoInstruments exist for Windows Forms.

For more detailed information about the types, classes and interfaces, see the
appropriate GoDiagram Class Reference Manual, a compiled HTML Help file
describing GoDiagram and GoLayout as well as GoInstruments.

Who should use this guide:

This guide is intended for application programmers using the GoInstruments for
.NET library or the InstrumentDemo sample application to incorporate
dials/gauges/meters or similar functionality in their GoDiagram for .NET
application.

This manual assumes you are familiar with Microsoft .NET and GoDiagram for
.NET programming concepts and terminology. If you are not, please refer to
your Microsoft .NET and GoDiagram for .NET documentation or online help.

 4

1. INTRODUCTION

The GoInstruments for .NET library is a set of classes built to display numeric
values in a graphical manner as part of GoDiagram for .NET applications. The
classes implement GoObjects that display a scale with regular markings and
labels and they implement GoObjects that indicate a value on a scale.

The objects can be customized and combined to present many different kinds of
appearances. In the real world, depending on the industry, such things are
called meters, dials, or gauges. Because there is so much customization that can
be done, GoInstruments does not provide any prebuilt instruments. The
InstrumentDemo sample application, however, does define many such objects
for various purposes and with various appearances and behaviors.

 5

2. THE INSTRUMENTDEMO SAMPLE APPLICATION

Running the InstrumentDemo sample application is a good way to become
familiar with the functionality built in the sample using the GoInstruments
classes.

Most of the objects you see are instances of subclasses of the Meter class. Each
Meter has a Background shape, a Scale, an Indicator, and a text Label.

The background shape defaults to a gray rectangle, but you can easily change
the properties of the GoRectangle, or replace it with an instance of a different
GoObject class.

The scale is a GraduatedScale. It has a line drawn from the scale’s Minimum
value to the Maximum value, along with major and minor tick marks that cross
that path at regular value intervals, and with labels that display the value for the
major tick marks. The Meter also has Minimum and Maximum properties;
these are just the scale’s properties exposed by the Meter for convenience.

The indicator is an Indicator. There are various kinds of Indicators, but they all
display a value on the scale by drawing something that intersects or ends at the
scale at the point representing that value. The Value of the Indicator is also
exposed as the Value of the Meter, for convenience in getting and setting the
value.

The label is often a caption, but can be used for other purposes such as
displaying the current value in a textual format.

Click on an object to select it. If it is a meter, the current value will be displayed
in the “Meter Value” text box. You can also modify the value by typing in this
text box and then typing Enter or clicking elsewhere to move the focus out of
that text box. Of course, modifying a meter value using the text box may be
difficult to do when the value is continually changing while you type. You can
click on the “Stop Animation” button to stop the timer that is modifying the
meter values.

You can also modify the values of many meters interactively when the pointer is
near the place where the indicator is indicating the current value. The cursor
changes to a “Hand” cursor to inform the user that they can modify the value by

 6

direct manipulation. Note that doing such direct manipulation does not
necessarily cause the meter to be selected in the view, so the “Meter Value”
text box at the top of the application might not show the value of what you are
changing.

You will notice that some of the meters are continually changing values. There
are two timers that are running: one updates the clock and one updates some
of the other meters. The timers are part of the example application—for
efficiency, each meter is not responsible for creating its own Timer.

The InstrumentDemo application also makes all of the object properties visible
by means of a PropertyGrid control. Click on the “Properties” button, or press
the F4 key, to make the “Properties” window visible. These property values
might not remain up-to-date as the application runs. However, you will be able
to experiment interactively by changing many of the interesting property values,
such as the ones involving the tick marks or tick labels on the scale.

 7

You can more directly manipulate scales by selecting and resizing the
GraduatedScaleLinear, GraduatedScaleElliptical, and Ruler instances that are
shown in the “Scales” tab. (You may need to scroll to the right to see them.)
Note how scales automatically skip drawing the minor ticks when they become
packed too close together.

The ruler, which is implemented by a subclass of GraduatedScaleLinear,
maintains a constant distance between the tick marks by continuously adjusting
the Maximum value according to the Length of the scale. You can double-click
on the ruler to toggle the ruler between metric and English units. Please note
that the ruler can only be as accurate as the Graphics indication of how many
pixels there are per inch. Your monitor or display may of course magnify the
ruler quite arbitrarily.

Also on the “Scales” tab is an example of a timeline. What you see is actually a
TimelineGroup, consisting of two Timeline scales. The example code shows how
you can easily add more Timelines to this group for greater detail, with intervals
of 6 hours and of 1 hour.

 8

The clock at the top left corner of the “Clocks” tab normally displays the current
time. However, you can speed up the clock, stop it, or reset the clock to the
current time by using the buttons at the top of the Windows Forms application.

The Clock example class is what implements this functionality. This is a subclass
of the Meter class where the Background object is actually a GIF image stored
as a resource. As you expand the clock by resizing you will notice that the image
will get fuzzy due to the stretching of the image. Resizing the other meters,
however, leaves them all crisp looking because they are do not use Images.

The thermometer at the left side of the “Complex Meters 2” tab is actually a
meter that has an additional scale in it. The regular scale displays Celsius; the
extra scale displays Fahrenheit. The scales have exactly the same StartPoint and
EndPoints, but the Celsius scale only displays ticks on the right side and the
Fahrenheit scale only displays ticks on the left side.

 9

A simple manufacturing facility consisting of tanks and pipes is shown in the
“Factory” tab. Fluid flows out of tanks through the pipes that come out the
bottom; fluid flows in through pipes coming in the top. The capacity of the
tanks is 1000 units; the current volume is shown both with a bar indicator as
well as textually. Furthermore you can change a tank value either by dragging
the bar indicator or by editing the text value in-place. A text label on each pipe
shows the maximum flow through the pipe; this too the user can edit in-place.

 10

3. THE NORTHWOODS.GO.INSTRUMENTS LIBRARY

The GoInstruments library principally consists of the basic GraduatedScale and
Indicator classes and the Meter class that is a group—a collection of objects
including a scale and an indicator.

In your application you will normally define and instantiate subclasses of Meter.
Your Meter subclass is where you will create and customize a GraduatedScale,
typically an instance of GraduatedScaleLinear or GraduatedScaleElliptical, and
an Indicator, typically an instance of IndicatorNeedle, IndicatorBar,
IndicatorBarElliptical, IndicatorSlider, IndicatorSliderElliptical, or
IndicatorKnob. Your Meter subclass is also responsible for making sure the
sizes and relative positions of the parts of the group are the way you would like
them to be.

GraduatedScale

A graduated scale displays a range of values along a line. The IGraduatedScale
interface defines these values to be double-precision floating-point numbers.
There are methods for getting a PointF position in document coordinates for a
value, and for getting a value for a given point. (Remember that document
coordinates are single-precision floating-point numbers.) The extreme values
are specified by the Minimum and Maximum properties.

The standard implementation of IGraduatedScale is the abstract class
GraduatedScale. This class inherits from the GoShape class. It draws a line
along a path with small crossings (“ticks”) marking intermediate value points.
One end of the path represents the Minimum value and the other end
represents the Maximum value.

There are a number of properties that govern the appearance of tick marks.
Tick marks can be either major or minor; major tick marks are meant to mark
more significant values at regular intervals. Major tick marks are typically
bigger, in width or in length, and can be labeled with the value that they
represent.

 11

When the main path is too short to hold so many tick marks, only the major tick
marks are drawn:

The values and frequency of tick marks are governed by two properties:
TickBase and TickUnit. The TickBase property is normally the first desired
major tick mark, and that is often the same as the Minimum property.
Additional tick marks are positioned at each point along the path of the scale
that represents a multiple of the TickUnit beyond the TickBase.

Tick Mark Values

Tick marks become major marks every TickMajorFrequency marks. Thus a
Minimum of 0, a Maximum of 77, a TickBase of 0, a TickUnit of 2.5, and a
TickMajorFrequency of 4 results in a scale that might appear as:

Changing the Minimum to –23 results in:

Changing the TickBase to 1.2 results in:

Changing the TickUnit to 5 results in:

Changing the TickBase back to 0 and the TickMajorFrequency to 5 results in:

 12

Tick Mark Appearance

The appearance of the tick marks is controlled by a number of different
properties: TickColor, TickWidth, TickLengthLeft, TickLengthRight,
TickMajorWidth, and TickMajorLengthRatio.

The default values for these tick properties results in a scale that might appear
as:

By default major tick marks are twice as long as minor ones. By changing
TickMajorLengthRatio to 1.2, for example, you get:

Notice that the major tick marks are wider than the minor ones. Changing
TickMajorWidth to 1 results in:

As the scale’s path is drawn from the Minimum value to the Maximum value,
there are two sides: left and right. You can control the length of each tick mark
to either side. For example, changing the default scale’s TickLengthRight
property to 0 results in:

Major Tick Mark Labels

When the TickLabels property is true (as it is by default), the value at each
major tick mark is drawn as well. The scale draws each label by using an
instance of GoText that is held as the value of the LabelTemplate property. The
scale calls the GetLabelString method to compute the text to be displayed and it

 13

calls the GetLabelCenter method to compute the middle position for the label.
The PaintLabel method then sets the LabelTemplate’s GoText.Text property to
the label text string, sets the GoObject.Center position of the text object, and
then paints the text object.

Thus all of the GoText properties can be set to affect the appearance of each
label. For example, you may wish to set the LabelTemplate’s GoText.Bold
property to true and GoText.FontSize to 12. Remember that the appearance
can be affected for the one shared GoText object, but not any editing behavior,
because the user may not modify any label.

The LabelDistance property controls the distance from the center of the label.
The default value is 10. Changing this property to 20 results in:

You can see that the labels are now much further from the tick marks. If you
have a vertical scale and large values (i.e. many digits of precision) you will need
to increase the LabelDistance to keep the numbers from overlapping with the
tick marks.

Labels can also be positioned on the left or on the right of the scale. A value for
the LabelStyle property of GraduatedScaleLabelStyle.Right results in:

A value of GraduatedScaleLabelStyle.AlternateStartRight results in:

You can easily change the formatting of the major tick label values by setting the
LabelFormat property. This is a .NET formatting string; the default is “G”.
When the values are very long, such as when the TickBase is set to 1.23456789,
you will often get overlapping labels:

 14

But by setting LabelFormat to “G3”, specifying a precision of 3 digits, the result
appears as:

Another way of reducing the chance of label overlap, in addition to using
alternating LabelStyle and a truncating LabelFormat, is to reduce the frequency
at which major ticks have labels. The value of LabelFrequency is normally 1,
meaning every major tick has a label. But set it to 2 and you can set the
LabelFormat to display more precision, such as “G7”, and still not have overlap:

Besides formatting the value for each major tick mark according to the
LabelFormat directive, you can also set LabelChoices to an ArrayList of objects
that are converted to strings for the integral values starting at zero. When
LabelChoices is non-null, GetLabelString rounds the value to an integer and
uses that integer as an index into the LabelChoices list. Values less than zero
use the first item (index zero); values beyond the end of the list use the last
item. An example of this is given later, when talking about KnobMeter.

Finally, one can override the GetLabelString method to produce whatever you
like. An example of this is in the Timeline class in the InstrumentDemo sample.

GraduatedScaleLinear

The above examples were all screenshots of a GraduatedScaleLinear, a scale
that has a path that is a straight line.

The distinguishing properties of a GraduatedScaleLinear are the StartPoint and
EndPoint properties. These coincide with the resize handles:

 15

GraduatedScaleElliptical

The other kind of scale is GraduatedScaleElliptical, a scale that has a path along
an ellipse.

The ellipse is determined by the Bounds of the scale and the StartAngle and
SweepAngle properties. By default there are the usual eight resize handles,
plus two additional ones for controlling the StartAngle and the SweepAngle if
the scale is Reshapable.

In the above example, the StartAngle is 160 and the SweepAngle is 340. The
SweepAngle may be negative, to have the path go in the counter-clockwise
direction.

Indicator

An indicator displays a particular value on a graduated scale. The abstract
Indicator class has a Value property and a Scale property.

But there are many different ways for an indicator to do its job. The primary
ways provided by GoInstruments are: needle, bar, slider, and knob.

Since the Indicator class inherits from GoShape, you can customize the
appearance by setting the Pen and/or Brush properties.

Needle

A needle indicator, IndicatorNeedle, is basically a simple shape that is drawn
from the PivotPoint to the point on the Scale representing the indicator’s
Value.

The IndicatorNeedleStyle enumeration lists the basic needle shapes.

The following example Meter shows an IndicatorNeedle of style
IndicatorNeedleStyle.Line, with a Value of zero, on a GraduatedScaleLinear
scale. The indicator’s Pen is Pens.OrangeRed.

 16

This next example Meter shows an IndicatorNeedle of style
IndicatorNeedleStyle.Kite, with a Value of about 66, on a
GraduatedScaleElliptical scale. The indicator’s Thickness is 12 and its Brush is
Brushes.Orange. The scale’s TickColor and LabelTemplate.TextColor are
orange too.

Bar

A bar indicator, IndicatorBar, displays as a rectangular or annular bar drawn
from the scale’s Minimum value to the indicator’s Value. Its width (across its
path) is specified by the Thickness property. It can also be shifted in position,
relative to the scale’s minimum value point, by setting the StartOffset property.

The following Meter screenshot shows an IndicatorBar with a Brushes.Yellow
brush and a Value of 30.

For elliptical scales, you need to use the IndicatorBarElliptical class. The
following example shows such a bar with a Thickness of 6. The Bounds of the
indicator have been inflated by half the Thickness to cause the bar to be
centered on the elliptical path of the scale.

 17

The IndicatorBar class also supports painting parts of the bar in different colors.
A Phase is a structure that holds a Color and starting and ending values, Min
and Max. You can add several Phases to an IndicatorBar. When the indicator’s
Value is less than a Phase’s Min value, that phase is not drawn. When the
Value is between the Min and the Max, the part of the phase from the
minimum up to the value is drawn. When the Value is greater than the Max,
the whole phase is drawn.

The IndicatorBar keeps Phases in an ordered list, so that if there is any overlap,
later phases will be drawn on top of earlier ones. Any gaps between the phases
will be filled in by the standard bar, which is actually drawn first.

In the MultiPhaseMeter example, three Phases have been added to a regular
IndicatorBar: green from 10 to 40, yellow from 55 to 70, and purple from 80 to
95. The indicator’s Brush is the default: Brushes.Red.

 18

The MultiPhaseMeterElliptical example also has three Phases: green from 0 to
55, yellow from 55 to 75, and red from 75 to 100. Note the line at 100, which is
caused by the indicator’s Pen (the default black pen) to demarcate the end of
the third phase.

Indicators need not have changing values, so you can use IndicatorBars in a
static manner to mark regions of a scale. The GaugeMeter example creates an
additional IndicatorBar, with two additional phases (green and yellow), that has
a Value equal to the Maximum of the Scale.

Slider

A slider indicator, IndicatorSlider, is basically like a fancy tick mark. As a regular
GoShape, you can set its Pen and Brush. You can control its size by setting the
Dimensions property. The dimension’s “width” controls how far off the path of
the scale the slider should extend; the “height” controls how long it is along the
path.

The IndicatorSliderStyle enumeration lists the different pre-defined shapes that
the slider can take. The following examples use IndicatorSliderStyle.Triangles

 19

and IndicatorSliderStyle.Bar. As with IndicatorBar, there is a separate
IndicatorSliderElliptical class to work with elliptical scales.

Knob

A knob, IndicatorKnob, is always elliptical, and should normally be circular. The
value is shown by a thin triangle, whose color is determined by the MarkerColor
property.

The KnobMeter example class uses an IndicatorKnob, but customizes its Brush
to be a PathGradientBrush to give a lighting/reflection effect.

You can also use the GraduatedScale.LabelChoices property to provide non-
numerically oriented labels. For example, if you initialize the KnobMeter’s Scale
as follows:

 scale.StartAngle = 220;

 scale.SweepAngle = 100;

 scale.TickMajorFrequency = 1;

 scale.LabelChoices =

 new ArrayList(new String[]{"0", "Low", "Med", "Hi"});

 scale.Maximum = scale.LabelChoices.Count-1;

 20

If you also set the KnobMeter’s Indicator.Quantized property to true and
QuantizeUnit to 1, you will get:

The user will only be able to choose among the four choices, resulting in a Value
from zero to three. Explanation about quantization is in the next section.

Quantization

When the Indicator.Value is set, the value is first passed to the ValidValue
method to ensure its validity. By default it will make sure the value is between
the scale’s Minimum and Maximum.

In addition, ValidValue will call the QuantizeValue method to allow the value to
be forced to take discrete values. Although you can override QuantizeValue to
get any behavior you like, three properties cover the most common cases:
Quantized, QuantizeBase and QuantizeUnit. The latter two properties behave
in a manner similar to GraduatedScale’s TickBase and TickUnit properties. The
standard implementation of QuantizeValue will make sure the value is
QuantizeBase plus a multiple of QuantizeUnit, if Quantized is true. Quantized
is false by default.

In the above example of a KnobMeter using a GraduatedScale with a list of
LabelChoices, it is commonplace to make sure the Indicator is Quantized.
However, if Indicator.Quantized is false, the user would be able to choose
fractional values, such as 1.5, in between the “Low” and “Med” major tick
marks. This might be desired when the values are not an enumerated set of
fixed choices but a continuous range of values.

Meter

Meter is the base class for most meters, that is, groups consisting of four child
objects: a Background, a GraduatedScale, an Indicator, and a Label.

The default implementations of CreateScale and CreateIndicator do nothing but
return null, so these two methods are normally overridden to create and
initialize some kind of GraduatedScale and some kind of Indicator. You can
create instances of Meter and do the creation and assignment of the scale and
the indicator explicitly, but it is more common to define a class to inherit from

 21

Meter so that you can keep together the code for creating and for laying out the
meter’s child objects.

Meter.LayoutChildren is implemented to set the Bounds of the Scale and of the
Indicator to be a rectangle that fits inside the Background’s Bounds leaving
room for the TopLeftMargin and the BottomRightMargin. These margins
default to a size of 10x10, but you may want to increase them depending on
where the scale labels are and how large they are.

LayoutChildren also positions the Label’s LabelRelativeSpot to be at the
LabelSpot compared to the Background. The default values for those spots are
GoObject.MiddleBottom, causing the Label to be placed inside the Background
centered along the bottom edge. Specify a LabelRelativeSpot of
GoObject.MiddleTop to position the Label outside of the Background,
underneath it.

Typical subclasses of Meter will override LayoutChildren to do nothing if
Initializing is false, call the base method, and then do any additional
adjustments of the indicator and/or scale based on the their new sizes and
positions.

For the convenience of classes that inherit from Meter, there is an Orientation
property that can be used by those kinds of meters that want to be vertical or
horizontal. The standard implementation of Meter’s methods does not use the
Orientation property at all.

For your convenience in referring to the various properties of the Indicator and
the Scale, Meter exposes many of their properties as its own.

MultipleIndicatorMeter

It is moderately common to have a Meter with more than one Indicator. The
MultipleIndicatorMeter class is designed to keep track of a list of Indicators.
The standard Meter.Indicator property is overridden to refer to the first
Indicator in that list.

An example of this is the MultiBarMeter. The example has three IndicatorBars,
of different colors, each controllable by the user.

 22

Another example is the Clock. A Clock has three indicators, the different
“hands”.

Each hand has different sizes and appearances, of course. But additionally they
are defined as classes inheriting from IndicatorNeedle so that they can override
the ValidValue method. This is what implements the automatic behavior of
“wrapping” around when reaching 60 (seconds or minutes).

Furthermore the hour hand can use the same 0-60 scale even though it wraps
around twice to show 1-12 hours. This is accomplished internally by multiplying
the hour value by 5 to get the actual indicator value.

