
GoDiagram Web for ASP.NET Web Forms Introduction
Copyright © 2002-2008 Northwoods Software Corporation

GoDiagramTM Web for Microsoft® ASP.NET Web Forms (“Go”) is a .NET class library containing a set of
Web Forms controls for easily building interactive diagrams in ASP.NET-based web applications.

GoDiagram Web shares much of the design and implementation with GoDiagram Win, which you use to
build Windows Forms applications. The User Guide provides details about Go, most of which apply to both
products. You will need to read this before you can really make good use of Go.

GoDiagram Web applications can be viewed in many different kinds of browsers since they consist of images
and some JavaScript. They can easily support AJAX-style reloading of images and data without doing
ASP.NET postbacks – and even without the partial postbacks of Microsoft AJAX.

Go controls run on the ASP.NET server. They do not run on the browser’s machine. If you need more
interactive behavior than what web pages can provide, you will need to install the .NET run-time on the client
machines and develop “rich-client” Windows Forms applications using GoDiagram Win.

Installation kit
The installation kit is a Windows Installer file for ASP.NET version 2.0. It serves as both an evaluation kit as
well as the full binary product kit—the only difference is whether you have purchased and installed a full
binary development license. Both the base Go assembly and the optional GoLayout and GoInstruments
assemblies are included in the binary kit.

Before you install Go, you should already have installed the .NET Framework SDK and ASP.NET 2.0.

An installation kit for .NET 1.1 and ASP.NET 1.1 is no longer available. However, we can provide
assemblies for ASP.NET 1.1 if you are still developing for that platform.

GoDiagram for ASP.NET Web Forms Files
Go consists of five assemblies:

• Northwoods.GoWeb.dll, holding the Northwoods.GoWeb namespace
• Northwoods.GoWeb.Layout.dll, holding the Northwoods.GoWeb.Layout namespace
• Northwoods.GoWeb.Instruments.dll, holding the Northwoods.GoWeb.Instruments

namespace
• Northwoods.GoWeb.Xml.dll, holding the Northwoods.GoWeb.Xml namespace
• Northwoods.GoWeb.Svg.dll, holding the Northwoods.GoWeb.Svg namespace

The five assemblies are in the lib subdirectory of the Go installation. They only depend on the Microsoft
.NET System, Web, and Drawing assemblies. They do not include any unmanaged code and do not require
any particular permissions beyond what any ASP.NET Web Forms controls would need.

Detailed documentation on the types in these libraries is provided in the GoWeb.chm compiled HTML help
file. This file, along with other documentation, is in the docs subdirectory of the Go installation. You may
find it instructive to see a listing of the differences between Windows Forms and ASP.NET Web Forms; this
list is maintained in GoWinWebDiffs.doc.

It also places some example code in the Samples and SamplesVB subdirectories. You can open a
subdirectory as a Web Site in Visual Studio 2005 or 2008, and compile and debug them individually. The
start page for each project/website is always named WebForm1.aspx.

Initial Experiences
If you haven’t already run the sample applications, just to get a feel for what Go can do, please try them. You
can also try them at: http://www.GoDotNetWeb.com

Reading the source code for the applications will really help you understand how easily you can implement
different kinds of features. Remember that these are sample applications. Sometimes functionality is
implemented just for the sake of demonstration—no real application would want to have that combination of
features, or so many different ways to achieve the same kind of functionality. Furthermore to simplify the
samples, we use very simple buttons instead of menus or other fancier controls.

If you have certain features you know you want to implement, but are not sure how to do so, it might help to
read the Frequently Asked Questions (FAQ) document, GoDiagramFAQ.chm, in the docs subdirectory.
Another source of inspiration can be the GoDiagram forum at http://www.nwoods.com/forum.

It might also help to read the entire User Guide, because it discusses much of the programming model
embodied in Go. If you don’t have that much time, at least read the Go Concepts chapter in the User Guide.

Customizing Visual Studio
If you are using Visual Studio, you’ll want to customize your Toolbox to include the three controls provided
by the Northwoods.GoWeb.dll assembly.

1. Start up Visual Studio
2. View the Toolbox, if it isn’t already visible.
3. Open up the tab that you want to hold the Go controls. You may want to create a new tab, or you

may want to use an existing tab of WebForms controls.
4. Context click (right-mouse click) in the desired toolbox tab window. Choose the “Add/Remove

Items” or “Choose Items…” context menu command. The Toolbox customization dialog will appear.
5. Select the “.NET Framework Components” tab.
6. Scroll down until you find the GoView, GoPalette, GoOverview, and GoPrintView controls, in the

GoWeb assembly. If you do not see these controls, you may need to click the “Browse…” button to
open the assembly in the lib subdirectory of the Go installation. Make sure all four controls have
check marks by them.

7. Click OK for this dialog. The three controls should appear in your toolbox.
You can now drag any of the controls onto your Web Form that you are designing. The Properties window
will let you specify many of the properties and events to customize the appearance and behavior of the
selected view.

Server Requirements
Go requires the use of session state to be able to produce images representing the view when referenced by
HTML IMG tags. The GoView, its GoDocument and its GoObjects are all serialized as part of the session
state.

If a session cannot be maintained, GoView state will be lost. This will happen when a session times out—the
GoView.SessionStarted event is raised when the state is requested again.

Browser Requirements
The HTML generated for GoView depends on JavaScript support on the client. If JavaScript scripting is
disabled in the browser, the user should be able to see the view but will not be able to interact with it.

Currently GoView supports rendering for a number of different browsers with varying levels of functionality.
We have tested Internet Explorer 6.0 and 7.0, and Firefox 1.5 and 2.0, running on various versions of
Windows (2000, XP, Vista). The functionality is most complete on Internet Explorer.

The examples are also dependent on cookies.

Licensing and Unlock Codes
GoDiagram is licensed per developer. There are no additional fees for distributing or running applications that
incorporate our GoDiagram products. Any developer who programs using the GoDiagram application
programming interface (API) must be licensed.

Each developer machine must have an installed unlock code. A single paid developer license may have
multiple unlock codes associated with it, allowing that developer to work on multiple machines (home
machines, laptops, etc.). By default, each GoDiagram license has 2 unlock codes associated with it. If
required, a reasonable number of additional unlock codes can be requested by sending e-mail to
gosales@nwoods.com.

If no unlock code is installed on a machine, GoDiagram will run in “evaluation mode” on that machine. You
will see a watermark in each GoDiagram window and you may see message boxes reminding you that you
that this is an evaluation version. In all other respects the functionality is identical to a machine with a valid
unlock code installed. You may build and test your applications in evaluation mode, but you will not be able
distribute applications built in evaluation mode to other machines (see Deployment).

Requesting and Installing Unlock Codes with the License Manager
Unlock codes are managed using the License Manager. To license your development machine, you need to
run the License Manager application (on the Start menu under Northwoods Software, GoDiagram) from that
machine and follow the instructions for requesting and installing unlock codes.

If you have already purchased the software, simply select your product in the product list. This will
automatically select the different assemblies that come with that product.

Click on "Request Unlock Codes" while connected to the web and fill out the requested information, which
includes your e-mail address and the order number and buyer e-mail address. Note that your order number
will have been sent to the buyer as the e-mail subject line when GoDiagram was purchased. Click on Submit
and the unlock codes will be automatically e-mailed to you. If you have lost or forgotten your order click on
“Get Order Information” in the License Manager , or if your development machine is not connected to the
internet, please send e-mail to gosales@nwoods.com.

Finally, enter the unlock codes by pressing "Enter Unlock Codes". You will be prompted to enter the unlock
codes for each assembly. Make sure you enter the matching unlock code for each requested assembly.

Each unlock code is only effective for a few days, so you should enter it in the LicenseManager application
promptly, but you can always re-request another unlock code if you need to reinstall GoDiagram in the future
on the same named machine.

mailto:gosales@nwoods.com
mailto:gosales@nwoods.com

Note that when you successfully enter an unlock code into the GoDiagram LicenseManager, a license key is
installed in the registry. If you frequently wipe out your disk drive to replace it with a standard disk image,
you do not need to re-request unlock codes each time. You simply have to restore the registry key:

HKEY_CURRENT_USER\SOFTWARE\Northwoods Software\Go.NET

You must have read access to this registry key in order to develop using GoDiagram or to compile and link
your license information into your executable (see Deployment).

Moving or Retiring Unlock Codes
If you are no longer using a particular machine for GoDiagram development, the name of the development
machine is changing, or you wish to move GoDiagram development from one machine to another, click on
“Remove All Licenses” while running the License Manager from your development machine. Doing so will
remove the unlock codes from your current machine, causing GoDiagram to run in evaluation mode once
again. You will also be presented with a form to report the deactivation of the machine. Enter your order
number and buyer e-mail and click on Submit to send this information to Northwoods. This is important, as it
will return your unlock code to the available pool for that order number, allowing you to successfully request
a new unlock code from another machine in the future.

Note that if you are changing machine names, it is important to “Remove All Licenses” before renaming your
machine to allow that machine name to be deactivated.

After retiring the unlock code from the previous machine, simply install your GoDiagram kit on the new
machine and run the License Manager as before to request and install unlock codes for the new machine.

Deployment
To deploy an application containing GoDiagram, you must compile and link the license(s) into your
application. This will allow your application (including GoDiagram DLLs) to be run on machines other than
your development machine without the need for your end users to be take any action, or even be aware of
GoDiagram licensing.

For Visual Studio 2005 or 2008 and ASP.NET 2.0, using the Web Application Project model, or
for Visual Studio 2003 and ASP.NET 1.1:

Web Application Projects were an add-on to Visual Studio 2005. They were also included in Service Pack 1.

You will need to add a line similar to the following into your Global.asax.cs or Global.asax.vb
file in the constructor for your HttpApplication:

 Northwoods.GoWeb.GoView.VersionName = "aQi...f2w="

For licensing GoLayout and GoInstruments, the lines will appear similar to:

 Northwoods.GoWeb.Layout.GoLayout.VersionName = "aQi...f2w="
 Northwoods.GoWeb.Instruments.GoInstruments.VersionName = "aQi...f2w="

GoXml and GoSvg just depend on the licensing of Northwoods.GoWeb.dll, and therefore do not require their
own unlock codes or license key assignment statements.

At run-time, the .NET licensing architecture will then find these linked-in license keys and pass them to each
component during the component creation process so that it can decide whether to run or throw an exception.

The GoDiagram LicenseManager application will generate the proper statement for you. Choose the
particular GoWeb assemblies you want to use, click the “Generate License Key” button, and enter the name
of your assembly that uses GoWeb, without the “.dll” file extension. It will produce a line of code (an
assignment statement) per assembly that it copies into the clipboard. You just need to paste it into your
“Global” HttpApplication constructor.

The license key is dependent on the name of the assembly, so you cannot rename the assembly later.

You will need to generate a new license key assignment statement for each ASP.NET web
application/assembly that you create that uses Go. You will need to generate new statements when you
upgrade to a new version of Go.

Note that the sample web applications that are included in the GoDiagram Web kit all use the Web Site
model, as discussed in the next section. The Web Site model, introduced with Visual Studio 2005, does not
use a separate project file to indicate which files are part of the web application and how to process them.

For Visual Studio 2005 or 2008 and ASP.NET 2.0, with the Web Site model:

Your license information is specified in a LICENSES.LICX file. Make sure that this file is included in your
project and is compiled as an embedded resource into an App_Licenses.dll assembly in the Bin subdirectory.
Do not include any VersionName assignment statements, as described above for VS2003/ASP.NET 1.1.

If you are using Microsoft Visual Studio, the LICENSES.LICX file is automatically created for you when you
drag and drop a licensed component, such as GoView, from the Toolbox onto a Form. This file will be
visible using the Visual Studio Solution Explorer (assuming the Show-All-Files property is selected on the
Visual Studio Project menu). If this file is not present or does not contain Northwoods information, you may
copy and paste the information from the LICENSES.LICX file from one of the GoDiagram sample
applications (such as LayoutDemo). Because licensed components other than GoDiagram may also make use
of the LICENSES.LICX file, be careful not to delete the information for any other component that you are
using.

The contents of the LICENSES.LICX file should be similar to the following:

Northwoods.GoWeb.GoView, Northwoods.GoWeb, Version=9.8.7.6, Culture=neutral, PublicKeyToken=a4e3b7b70161cfe8
Northwoods.GoWeb.GoPalette, Northwoods.GoWeb, Version=9.8.7.6, Culture=neutral, PublicKeyToken=a4e3b7b70161cfe8
Northwoods.GoWeb.GoOverview, Northwoods.GoWeb, Version=9.8.7.6, Culture=neutral, PublicKeyToken=a4e3b7b70161cfe8
Northwoods.GoWeb.Layout.GoLayoutForceDirected, Northwoods.GoWeb.Layout, Version=9.8.7.6, Culture=neutral, PublicKeyToken=a4e3b7b70161cfe8
Northwoods.GoWeb.Layout.GoLayoutLayeredDigraph, Northwoods.GoWeb.Layout, Version=9.8.7.6, Culture=neutral, PublicKeyToken=a4e3b7b70161cfe8
Northwoods.GoWeb.Layout.GoLayoutTree, Northwoods.GoWeb.Layout, Version=9.8.7.6, Culture=neutral, PublicKeyToken=a4e3b7b70161cfe8
Northwoods.GoWeb.Instruments.GoInstruments, Northwoods.GoWeb.Instruments, Version=9.8.7.6, Culture=neutral, PublicKeyToken=a4e3b7b70161cfe8

Your LICENSES.LICX file should contain one entry for each of the licensed GoDiagram components or
controls used in your application.

You will need to substitute the actual four-part version number that you want to use. The four-part version
number is formatted as follows:
 m.n.b.f
where:
 m is the GoDiagram major version number
 n is the GoDiagram minor version number

 b is the GoDiagram baselevel
 f is a number identifying the .NET Framework that GoDiagram is linked with
 (0 for .NET 1.0, 1 for .NET 1.1, 2 for .NET 2.0, 3 for .NET 3.5)

To determine the correct four-part version number that you are using in your Visual Studio project, open the
Solution Explorer and examine the References section looking for references with the Northwoods prefix.
Open the properties window for these references and examine the Version property.

Note that the version numbers specified in the LICENSES.LICX file, the References section of the Solutions
Explorer, and the actual GoDiagram DLLs distributed with your application must all match exactly!

In the Visual Studio 2005 or 2008 Solution Explorer, select the LICENSES.LICX file and invoke Build
Runtime Licenses. This will create the App_Licenses.dll assembly in the Bin subdirectory. If you have
assembly binding problems when building the runtime licenses, you may need to copy the
Northwoods.GoWeb.* DLLs to Visual Studio’s PublicAssemblies subfolder. This is typically the directory:
...\Common7\IDE\PublicAssemblies

If you just upgraded the project, you may need to save it, exit Visual Studio, and then re-open the project and
invoke Build Runtime Licenses.

Finally, remember to do your deployment testing on a machine where GoDiagram is not installed.

Appearance
A GoView will appear as an image in an HTML page. The image includes a margin where scrolling buttons
are displayed if the view can be scrolled in that direction. You can set properties on a GoView to change the
appearance of the scroll buttons and appearance and size of the scrolling margin.

Of course, you can set many other useful properties and handle many events on a GoView, in common with
the Windows Forms version. Read the User Guide or API reference for more details.

Rendering
An HTML page cannot have images embedded in them—they must refer to the result of a separate request.
Thus the GoView control in Go renders as HTML that includes an IMG tag.

For example, a simple commonplace ASPX use of a GoView:

<GoWeb:GoView id="MyView" runat="Server" Height="300" Width="400"
 NoPost="true" ImagePage="GoWebImage.axd" ScriptFile="GoWeb.js" CssFile="none">
</GoWeb:GoView>

might render into HTML such as:

<img src="GoWebImage.axd?GoView=d337af23d9d945a79a8f87b6dcef6aa5"
 id="Img1" name="MyView" width="400" height="300"
 onmousedown="goMouseDown(event,'MyView')" onmouseup="goMouseUp(event,'MyView')"
 ondblclick="goDblClick(event,'MyView')" onmousemove="goMouseMove(event,'MyView')"
 oncontextmenu="return false"
onload="goInit('MyView','MyView','d337af23d9d945a79a8f87b6dcef6aa5',true,'GoWebImage.a
xd','',goview_MyView,false)"
 onerror="goLoadError('MyView')"
 tabindex="1" title="" alt="? loading... GoWebImage.axd"
 galleryimg="no" />

The SRC attribute is a reference to a GoDiagram-defined ASP.NET HTTP handler, GoWebImageHandler,
an IHttpHandler, that must be declared in the ASP.NET configuration. You can do this by adding (or
merging) the following lines into your application’s Web.config file:

<httpHandlers>
 <add verb="GET" path="GoWebImage.axd" type="Northwoods.GoWeb.GoWebImageHandler"/>
</httpHandlers>

Be sure that any configured HTTP handler for *.axd does not take precedence over this one; you can use a
different name and file extension if it is more convenient. In IIS7, you will need to either update the
integrated <system.webServer> <handlers> configuration section, or you will need to run your web
app in Classic ASP.NET integration mode by moving it to the Classic ASP.NET Application Pool.

You can also control the format of the image that is generated by specifying the GoView.ImageFormat
property. This defaults to ImageFormat.Png, which should work with nearly all browsers, but you may wish
to use ImageFormat.Gif, which provides sharp images but with limited colors, or ImageFormat.Jpeg, that
provides fuzzier images but should be supported for display by all browsers.

GoWebImageHandler produces an image by first getting a bitmap of a view, as identified by its document-
wide unique ID. The ID is used as a key in the GoView.GetSessionViewsTable hashtable to get the saved
GoView that should be displayed. The ID string is produced by the GoView.MakeSessionViewID method.
The GoView.GetBitmap method paints any scrolling margin and draws any scroll buttons, and then calls
PaintView to render all of the objects that are visible in the view.

Rendering also produces definitions of JavaScript functions such as goMouseDown as the event handler for
the onMouseDown event. This code is generated by the GoView.RenderScript method.

Client-side Event Handling
A very thin layer of JavaScript code runs on the browser in order to handle mouse events that can be
summarized and then passed back to the GoView via a postback. The appropriate onMouseDown,
onMouseUp, onDblClick, and onMouseMove event handlers are automatically defined as attributes on
the IMG tag if GoView.Enabled is true.

A web-server request only occurs upon a mouse up or a mouse double-click event. Just passing the mouse
over a view or performing a mouse-down-and-drag (before the mouse up) is completely handled by the
JavaScript running on the browser.

The predefined JavaScript can also handle key press events. However, the IMG tag cannot handle
onKeyDown. Instead, if you want keystroke commands to be passed onto your GoView, you will need to
add the event handler declaration on the HTML BODY:

 <body onkeydown="goKeyDown(event, 'MyView')">

In doing this, you are limiting the user to passing the key press events to just one view. Often there can be
conflicts and confusion with the keys that are handled by the browser, so handling keystrokes is not common.

GoView implements the IPostBackEventHandler interface. GoView supports a number of predefined
postback event handler query commands. This facility is convenient when you want to define some buttons
that perform standard operations on a view. For example, this is the definition of an HTML button that
performs a copy on the current selection of the view named “MyView”:

<button id="Button5" onclick="goAction('copy','MyView')" type="button">
Copy</button>

The goAction JavaScript function is defined, along with other similar functions, as follows:

 function goAction(act, id) {
 goPost(id, 'act=' + act);
 }

The goPost JavaScript function is defined to either do a normal postback, by calling the ASP.NET-defined
__doPostBack function, or to just execute commands on that one view and reload the resulting image.
The latter choice is taken when the GoView.NoPost property is true, resulting in an AJAX-style web
application. The advantage of avoiding a full postback is that the whole page does not need to be regenerated.
However, if any other part of the page needs to be updated, for example by changing any other controls or
text, a standard postback must be done, or you need to implement all such updating with dynamic HTML in
client-side JavaScript. One disadvantage of the “NoPost” method is that additional initialization may be
required for the view, as described in the section below titled “Session State for NoPost GoViews”.

The default value for GoView.NoPost is true, which causes mouse events in the “view” to reload the image
without regenerating and reloading the whole page. You can also control whether a post or just an image
reload occurs dynamically in JavaScript code running in the browser. Just set the goNoPost property on the
IMG element that was rendered by the GoView. The initial value of goNoPost is provided by
GoView.NoPost.

When scripting is disabled on the client browser, there is not much the user will be able to do with the view.

Server-side Event Handling
These are the kinds of query strings GoView handles by default on a postback or image reload, in the
GoView.RaisePostBackEvent method:

• Actions. These take no other arguments.
o act=cut (call GoView.EditCut())
o act=copy (call GoView.EditCopy())
o act=paste (call GoView.EditPaste())
o act=delete (call GoView.EditDelete())
o act=selectall (call GoView.SelectAll())

o act=undo (call GoView.Undo())
o act=redo (call GoView.Redo())

• Scrolling/panning. The scrolling can be by page or by line, by amounts in both X and Y directions.
This calls either GoView.ScrollPage or GoView.ScrollLine. Examples:

o scroll=page&dx=1&dy=-1 (towards the top-right)
o scroll=line&dx=-1&dy=0 (towards the left)

You can also set the position of the view in the document to an absolute position, rather than
modifying the GoView.DocPosition by incrementing/decrementing X and/or Y.

o position&x=100&y=200 (set GoView.DocPosition to 100,200)
o position&x=100 (set GoView.DocPosition.X to 100 but leave Y unchanged)

• Zooming/rescaling. There are three named commands, plus the ability to set the GoView.DocScale
to an absolute value. Examples:

o zoom=in
o zoom=out
o zoom=fit
o zoom=1.23

• Resizing. The size of the view can be changed by amounts in both X and Y directions. The resize
parameter specifies the step, which is multiplied with the dx and dy values to give the number of units
to change size. The minimum size is 30. The units are always pixels. Examples:

o resize=10&dx=1&dy=-1 (wider and shorter)
o resize=10&dx=-1&dy=0 (narrower; height stays the same)

You can also specify an absolute size in pixels:
o size&width=500&height=400 (set GoView.Width to 500 pixels and set

GoView.Height to 400 pixels)
o size&width=500 (set GoView.Width to 500 pixels but leave GoView.Height

unchanged)
• Moving the Selection. You can move the currently selected objects, by amounts in both X and Y

directions. The movesel parameter specifies the step, which is multiplied with the dx and dy values to
give the distance to move the objects. This calls GoView.MoveSelection. Example:

o movesel=1&dx=10&dy=0 (towards the right)
• Copying the Selection. You can copy and shift the currently selected objects, by amounts in both X

and Y directions. The copysel parameter specifies the step, which is multiplied with the dx and dy
values to give the distance to shift the copied objects. This calls GoView.CopySelection. Example:

o copysel=1&dx=10&dy=10 (towards the right and down)
• Key press. This includes the key code and any ctrl, shift or alt. Example:

o key=65&ctrl=1 (the user typed a Ctrl-A)
• Mouse gesture. This includes the mouse down and mouse up positions, along with any ctrl,

shift or alt modifier, any left, right, or middle mouse button indication, and whether it is
a double-click (the mouse down and mouse up positions must also be very close to each other).
Examples:

o downx=342&downy=454&upx=374&upy=478&left=1
o downx=342&downy=454&upx=342&upy=454&dblclick=1

• Requests. This predefined case just calls GoViewDataRenderer.HandleClientRequest, so that you
can easily implement your own actions. Example:

o request&color=fuschia

The standard ASP.NET event handling still occurs, of course. For example, the ASP.NET button:

<asp:button id="Button10" OnClick="EditInsert" Runat="Server"
Text="Insert"></asp:button>

when clicked, will result in a call on the server to this method on your page, which might be defined as
follows:

 void EditInsert(Object sender, EventArgs evt) {
 if (!MyPalette.Selection.IsEmpty) {
 MyView.StartTransaction();
 GoObject obj = MyPalette.Selection.Primary;
 MyView.Document.AddCopy(obj, MyView.DocExtentCenter);
 MyView.FinishTransaction("inserted from palette");
 }
 }

Furthermore, event handling on GoView can be used to perform useful work. For example, you can define
GoView.ObjectGotSelection and GoView.ObjectLostSelection handlers to modify the appearance of the
page:

 protected Northwoods.GoWeb.GoView MyView; // Page variables
 protected Northwoods.GoWeb.GoPalette MyPalette;
 protected System.Web.UI.WebControls.Panel LabelPanel;
 protected System.Web.UI.WebControls.TextBox LabelTextBox;
 protected System.Web.UI.WebControls.Button SetLabelButton;

 private void InitializeComponent() {
 MyView.ObjectLostSelection +=
 new GoSelectionEventHandler(MyView_ObjectLostSelection);
 MyView.ObjectGotSelection +=
 new GoSelectionEventHandler(MyView_ObjectGotSelection);
 . . .
 }

 private void MyView_ObjectGotSelection(object sender,
 GoSelectionEventArgs e) {
 PersonNode pnode = MyView.Selection.Primary as PersonNode;
 if (pnode != null) {
 LabelPanel.Visible = true;
 LabelTextBox.Text = pnode.Text + ": " + pnode.ToolTipText;
 } else {
 LabelPanel.Visible = false;
 }
 }

 private void MyView_ObjectLostSelection(object sender,
 GoSelectionEventArgs e) {
 MyView_ObjectGotSelection(sender, e);
 }

Sessions and Initialization
This discussion assumes you are already very familiar with the life cycle for ASP.NET pages and web
controls. Search for “Control Execution Lifecycle” in the ASP.NET 1.1 documentation, or for “ASP.NET
Page Life Cycle” in the ASP.NET 2.0 documentation.

The state of a GoView is maintained between page requests by using session state rather than by using
ASP.NET view state. A Hashtable mapping GoView identifiers to GoViews is kept in the Session.
Maintaining the GoView through the session is also essential for the IMG tag reference to be able to find the
view for generating an image to be streamed to the browser.

Using ASP.NET view state as many simple web controls do would be extremely inefficient because that
would entail serializing into the HTML page all of the state of the GoView, its GoSelection, and its
GoDocument, including the document’s layers of GoObjects. That would consume considerable time and
communication bandwidth. Serializing these objects in the Session will be much faster, although doing so
does increase the server-side memory requirements for your web application.

View state is only used to remember the unique identifier for the view in the session state. This unique
identifier is assigned when each view is loaded not during a postback. If you set EnableViewState to false,
the unique identifier is just the UniqueID (but with modified syntax, as the value of GoView.SafeID).

Using session state does have the disadvantage that the state is lost when the session times out. The
GoView.SessionStarted event is raised whenever the view is not found saved in the session state. You
should always implement a SessionStarted event handler to initialize your GoView and in particular the
view’s GoDocument. For example, when your page is initialized, you will want to establish event handlers
for all of your GoViews:

 private void InitializeComponent() {
 MyView.ObjectLostSelection +=
 new GoSelectionEventHandler(MyView_ObjectLostSelection);
 MyView.SelectionMoved +=
 new System.EventHandler(MyView_SelectionMoved);
 MyView.BackgroundSingleClicked +=
 new GoInputEventHandler(MyView_BackgroundSingleClicked);
 MyView.ObjectGotSelection +=
 new GoSelectionEventHandler(MyView_ObjectGotSelection);
 LinkButton.Click += new EventHandler(LinkButton_Click);
 SetLabelButton.Click += new EventHandler(SetLabelButton_Click);
 MyPalette.SessionStarted += new EventHandler(InitializePalette);
 MyView.SessionStarted += new EventHandler(InitializeCanvas);
 }

Your SessionStarted event handler named InitializePalette could be implemented as follows:

 public void InitializePalette(Object sender, EventArgs evt) {
 GoComment c = new GoComment();
 c.Text = "Enter your comments here";
 MyPalette.Document.Add(c);
 GraphNode n = new GraphNode(GraphNodeKind.Manager);
 MyPalette.Document.Add(n);
 GraphNode m = new GraphNode(GraphNodeKind.Individuals);
 MyPalette.Document.Add(m);
 GraphNode v = new GraphNode(GraphNodeKind.Vacancy);
 MyPalette.Document.Add(v);
 }

The sequence of calls and events can best be described by examining the definition of GoView.OnLoad:

 protected override void OnLoad(EventArgs evt) {
 . . .

 GoView saved = FindSessionView();
 if (saved != null) {
 LoadView(saved);
 } else {
 CreateView();
 OnSessionStarted(EventArgs.Empty);
 }
 // make sure the view’s state is available later for GoWebImageHandler
 StoreSessionView();
 base.OnLoad(evt);
 . . .
 }

First we call FindSessionView to find the saved GoView in the Session state. If we find it, we call
LoadView so that this Page-created instance of GoView gets a chance to restore the desired state from the
saved GoView in the Session. Note that LoadView should be overridden by each subclass of GoView, in the
following manner, to copy the state defined by that class:

 protected override void LoadView(GoView saved) {
 base.LoadView(saved);
 AppView v = (AppView)saved;
 myField = v.myField;
 }

If no saved GoView is found in the Session for this view, OnLoad calls CreateView to allow the view a
chance to perform any expensive initialization that it only wants to do when a view is not found in the session
state. This normally includes creating a GoDocument, a GoSelection, the default GoTools, and a
GoViewDataRenderer. Then it raises a SessionStarted event, to permit application-specific initialization
such as document initialization. You can do such initialization based on control values that were loaded from
the page’s view state.

Note that OnLoad calls StoreSessionView to be sure that this GoView instance is saved in the session state.
This is needed for the GoWebImageHandler HTTP handler to find the view in order to generate and stream
an image to the browser, and so that the next call to FindSessionView in the session will be able to find the
view and restore the state with a call to LoadView.

After the page and its controls have been restored to their earlier state in the session, input events are handled
by the RaisePostBackEvent method. A GoView can then raise its own events, thereby invoking any event
handlers that you may have registered. Remember that GoView event handlers are not serialized, so you
must re-establish them in an Init or a Load event handler on the Page or the GoView itself, as shown above
in the definition of InitializeComponent on the Page, or perhaps in your overrides of GoView.LoadView
and GoView.CreateView.

Finally, just before the page is rendered to HTML, GoView raises an Updated event to make it easy for you
to add code that might help save the current document state. Here is part of the definition of
GoView.Render, and the definition of OnUpdated:

 protected override void Render(HtmlTextWriter wrt) {
 OnUpdated(EventArgs.Empty);
 . . . produce HTML for the GoView
 }

 protected virtual void OnUpdated(EventArgs evt) {
 if (Updated != null)

 Updated(this, evt); // call all handlers
 }

You can easily have two views looking at the same document. Just be sure to set the Document property
when the session is started.

 MyView2.SessionStarted += new EventHandler(InitializeView2);
 void InitializeView2(Object sender, EventArgs evt) {
 MyView2.Document = MyView.Document;
 }

State that is not serialized will also need to be restored upon each load. This includes the
GoView.BackgroundImage property and static properties such as GoImage.DefaultResourceManager.
You can do this either in the Page’s Load event handler, the GoView’s Load event handler or in your
override of GoView.LoadView.

Since session state must be used in order to produce an image in the reference to the
GoWebImageHandler HTTP handler, there can be quite a bit of memory stored in the session state. If you
know that you no longer need any GoDiagram-related session state, you can discard it by performing:

 MyView.GetSessionViewsTable().Clear();

You might want to do this when you know that the user won’t be returning to your page with the current state.
For example, imagine a diagram having a bunch of hyperlink objects representing what in HTML would be
 tags. You can implement this with the following event handler:

private void MyView_ObjectSingleClicked(Object sender,
 GoObjectEventArgs evt) {
 GoTextNode n = evt.GoObject.ParentNode as GoTextNode;
 if (n != null) {
 String url = ... get URL for the node ...
 this.Response.Redirect(url, true);
 MyView.GetSessionViewsTable().Clear();
 }
}

The preceding code is modifying the HttpResponse object, only available when the whole Page is being
generated.

Session State for NoPost GoViews
The standard scenario, described in the previous section, conforms to the normal Page and WebControl
lifecycle in ASP.NET web applications. For an HTML request ASP.NET automatically re-creates the Page
and its controls, initializes them individually with the Init event, restores their state, starts them with the Load
event, and has them handle events from the request.

But if you are building an AJAX-style web application, you cannot afford to lose client-side state or
communication time by having any postbacks happen unnecessarily. That is why there are “NoPost” views.
(Our terminology precedes “AJAX”, since GoDiagram Web has supported the GoView.NoPost property for
years. Also, GoDiagram Web uses the JSON format for passing data rather than XML.)

When an HTML query goes directly to the GoWebImageHandler (GoWebImage.axd) HTTP handler, it
must always specify the unique ID of the GoView that needs to be produced as an image. For normal pages,

this is the only information needed—GoWebImageHandler just uses the unique ID to find the desired
GoView in the session state and calls GoView.GetBitmap to produce the image.

However, in a GoView.NoPost scenario, the JavaScript-generated mouse or other action event request query
string is passed directly to the GoWebImageHandler instead of through the page that contains the GoView
web control. In both scenarios the GoView is deserialized from the session state. But in the NoPost case, the
additional setup that is done by the Page and WebControl, i.e. the Init and Load events, does not happen
because there is no Page that is reconstructed to contain the GoView control.

Clearly this can be much more efficient than the normal ASP.NET page request: no master Page is
constructed on the server along with all its children, the deserialized GoView is modified directly and then
reserialized, and state is maintained in the client browser. However, you will need to copy the GoView
initialization code that is normally done in the Init or Load event handler for the Page, into an override of
GoView.OnNoPostLoad so that it is performed even when the GoView deserialized instance is used directly.
You only need to override this method if GoView.NoPost is true and you need to re-initialize any non-
serialized state and event handlers.

Customizing Client-side Behavior
When a GoView is rendered, it produces some HTML. Primarily it generates an element. But it also
generates JavaScript data (JSON format) to describe parts of the image to implement client-side behavior.

In version 2.4 and earlier, it was possible to do some customization by defining the JavaScript functions that
your application needed and modifying some of the standard code included in GoWeb.js. You could also
override some methods on GoView, but the functionality was limited and awkward. The new
GoViewDataRenderer class in version 2.5 improves your ability to customize the data that accompanies an
image and makes it easier to specify certain predefined interactive behavior on the client.

Each GoView has a DataRenderer property that is an instance of a GoViewDataRenderer. You can set
some of its properties to easily customize the client-side behavior. For example, if you want to execute some
JavaScript code on the client when the user clicks a node, your Page_Load method could do something like:

 // client-side behavior:
 MyView.DataRenderer.LabeledNodeSingleClick = "EditLabel()";
 MyView.DataRenderer.NoClick = "HideAll()";

Then you can define those JavaScript functions in your ASPX file:

 <script type="text/javascript">
<!--
function EditLabel() {
 goShowPanel('LabelPanel', 'LabelTextBox', goInfo.Text);
}
function HideAll() {
 goHide('LabelPanel');
}
// -->
 </script>

This makes use of some standard convenience functions that GoWeb.js provides (goShowPanel and
goHide), some information passed from the server to the client (goInfo), and assumes that you have defined
the corresponding web controls such as:

 <asp:Panel id="LabelPanel" style="display:none" runat="server">

Label:
 <asp:TextBox id="LabelTextBox" runat="server"></asp:TextBox>
 <asp:Button id="SetLabelButton" runat="server" Text="Set Label"
 onclick="SetLabelButton_Click"></asp:Button>
 </asp:Panel>

Then the user will be able to click on a node, the LabelPanel will appear, and the user can modify the text. If
they click the SetLabelButton, your SetLabelButton_Click event handler will be called on the server. You
might have defined it to be something like:

protected void SetLabelButton_Click(object sender, System.EventArgs e) {
 IGoLabeledNode lnode = MyView.Selection.Primary as IGoLabeledNode;
 if (lnode != null) {
 MyView.StartTransaction();
 lnode.Label.Text = LabelTextBox.Text;
 MyView.FinishTransaction("set label");
 }
}

Until the user clicks the SetLabelButton, which in this example is defined to perform a postback, there is no
communication with the web server.

You can easily specify what JavaScript to execute when the user clicks on an IGoLabeledNode such as a
GoNode or a GoLabeledLink by setting some of the following GoViewDataRenderer properties:

• LabeledNodeSingleClick, executed when there is a single click on a IGoLabeledNode or on a
GoLabeledLink containing a GoText

• SingleClickDefault, executed when there is a single click somewhere else in the view
• LabeledNodeDoubleClick
• DoubleClickDefault
• LabeledNodeContextClick
• ContextClickDefault
• NoClick, executed when none of the previous cases apply, or if the mouse moved too far between the

mouse down point and the mouse up point (some kind of drag)

As another example, you might want to implement something similar to the hyperlink
MyView_ObjectSingleClicked event handler shown above (which runs on the server), but open another
page in JavaScript (without involving any server-side round-trips). You can do that by telling the GoView’s
DataRenderer that it should handle clicks on labeled nodes by calling a JavaScript function:

 goView1.DataRenderer.LabeledNodeSingleClick = "NodeClicked()";

Then this JavaScript function could be defined in your ASPX page <SCRIPT> element, in a very simplistic
fashion:

function NodeClicked() {
 window.open(goInfo.Text);
 return false;
}

This JavaScript opens a window displaying a URL given by the Text property for the node. Note again how
the goInfo variable has been initialized by the Go code to refer to a JavaScript object holding properties
corresponding to some of the properties of the node on the server. (More on this later.)

Normally all mouse events will be passed on to the server. (This may or may not cause a postback, depending
on whether GoView.NoPost is false or true.) However, if you want to handle a click entirely on the client,
you can just return false from any of these …Click… event-handling functions. The NodeClicked function
above does this, so that clicking on a node will open a browser window without getting a new image from the
server.

If you want to prevent all other mouse events from being passed on to the server, you initialize your
GoView.DataRenderer as follows:

 goView1.DataRenderer.NoClick = "false";

This need not just be the false expression – it can be any expression, including a function call, that returns
false.

You can also implement your own client-side mouse-over behavior. Just define a JavaScript function in your
ASPX page <SCRIPT> element, named goOnMouseOver, as follows:

function goOnMouseOver(e, id) {
 var info = goFindInfoEvent(e, id);
 var sdiv = document.getElementById('Status');
 if (sdiv) {
 if (info)
 sdiv.innerHTML = 'over: ' + info.Text;
 else
 sdiv.innerHTML = '';
 }
}

This example depends on an HTML element such as:

<div id="Status"></div>

The goOnMouseOver function will be called for all GoViews that are in your HTML document. This is
different than when defining click behavior, because you can easily specify different click behaviors for
different objects (and when there is no object) and for different kinds of clicks.

The goFindInfoEvent function searches for a JavaScript object at the point of the mouse event. This
JavaScript object will have various property/value pairs, provided by a GoPartInfo on the server, as
described in the next section.

GoViewDataRenderer
Specifying client-side click behavior is only part of the purpose of the GoViewDataRenderer class. The
primary purpose is actually to determine what data to send to the client. The GoViewDataRenderer class
can generate information for cursors, tooltips, context menus, and general information about the parts of the
diagram. It is the latter type of data that passes the text strings of visible IGoLabeledNodes to the browser.

On the server side your application needs to associate GoPartInfos holding property values corresponding to
objects visible in the view. These are reconstructed as JavaScript objects on the client side. In JavaScript

code you can easily find such a particular “info” object given a point in the image by calling the
goFindInfoAt or goFindInfoEvent function.

The GoViewDataRenderer iterates over all of the visible objects in the view. If
GoViewDataRenderer.PartInfos is true (which it is by default), it calls GoObject.GetPartInfo on each top-
level object and each immediate child of GoSubGraphs. This method is responsible for deciding whether
any data should be associated with the GoObject’s area in the image, and if so, for specifying that data in a
GoPartInfo.

The default implementation of GoObject.GetPartInfo just calls
GoViewDataRenderer.GetStandardPartInfo. This checks whether the given GoObject is an
IGoLabeledNode or a GoLabeledLink that holds a GoText object. If it is, then it allocates a GoPartInfo
by calling CreatePartInfo and adds property/value pairs. This is useful for the common case where you just
want to provide a GoPartInfo to let the user see and perhaps modify the value of a text label locally on the
client.

If you want to optimize the data generation to avoid producing this standard GoPartInfo when the Label is
not Editable, because you only want to have the data on the client when the user might be able to modify the
text, you can set GoViewDataRenderer.PartInfosIfLabelNotEditable to false.

Predefined GoPartInfo property names include ID, Text, SingleClick, DoubleClick, and ContextClick.
These are also the names of properties of the GoPartInfo class which just call GoPartInfo.GetProperty and
SetProperty with the corresponding predefined name. You can easily add your own property/value pairs by
overriding GoObject.GetPartInfo, so that each of your interesting object classes can pass information to the
browser. For example, consider this override on a GoLabeledLink:

public override GoPartInfo GetPartInfo(GoView view, IGoPartInfoRenderer renderer) {
 GoPartInfo info = renderer.CreatePartInfo();
 if (this.MidLabel is GoText) {
 info.Text = ((GoText)this.MidLabel).Text;
 }
 info["Curviness"] = this.Curviness;
 info.SingleClick = "ShowLink()";
 return info;
}

This definition of GetPartInfo passes along a “Text” property value and a “Curviness” property value. It
also specifies the JavaScript function to call when the user clicks on that GoLabeledLink.

As always, being able to override methods on either GoViewDataRenderer or GoObject gives you the
flexibility to put your code where it makes the most sense for your application.

The GoViewDataRenderer.Render method collects all of these GoPartInfos that are associated with
regions in the image and then generates some JavaScript that initializes a JavaScript object that corresponds to
the view and is associated with the DOM element. A GoPartInfo is rendered by calling ToString(),
which generates a JavaScript Object Notation string. GoPartInfo can handle property values that are strings,
booleans, integers, floats, and Arrays of those types. [By the way, GoPartInfo has some static methods that
you may find useful in producing quoted JavaScript strings.]

GoViewDataRenderer.Render also generates JavaScript to initialize data structures for cursors, tooltips, and
context menus. In addition to cursors, tooltips, and context menus associated with GoObjects, it also specfies
default properties for the whole view: ToolTipDefault, MenuDefault, LabeledNodeSingleClick,

LabeledNodeDoubleClick, LabeledNodeContextClick, SingleClickDefault, DoubleClickDefault,
ContextClickDefault, and NoClick. The “…Click…” properties all provide JavaScript to be executed for
the corresponding event; the NoClick property specifies the JavaScript to execute when there is a mouse-up-
and-down that is not a click, such as a mouse-drag, or when there is a click for which no “…Click” or
“…ClickDefault” JavaScript is defined.

On the client you can retrieve the JavaScript object that holds all the data for a GoView by calling the
goFindView function. You can retrieve the JavaScript object corresponding to a GoPartInfo by calling the
goFindInfoAt function, passing it X and Y view coordinates. Of course goFindInfoAt may very well return
null, if there wasn’t any GoObject at that point, or if no GoPartInfo was produced for the GoObject at that
point.

You may want to execute some JavaScript as soon as the data for a view has been downloaded. Define a
goOnLoad JavaScript function; it will be called with an argument that is the id of the view.

function goOnLoad(id, reload) { // called after data has been downloaded
 var v = goFindView(id);
 if (v != null) {
 // use DHTML to update your page
 }
}

Handling Requests from the Client
Finally, GoViewDataRenderer and the goRequest JavaScript function make it a little easier to implement
custom query handlers. You have always been able to override GoView.RaisePostBackEvent to parse the
argument string and decide what actions to take. (Remember that this method is called both for real postbacks
as well as when the view is reloaded in a NoPost, AJAX-like situation.) By overriding
GoViewDataRenderer.HandleClientRequest, you will get not only the original query string, but also a
Hashtable holding the parsed name/value pairs from that string. Also, you may find that implementing a
class inheriting from GoViewDataRenderer is simpler than subclassing GoView.

For example, let’s say you want a button that changes the color of the currently selected objects.

<button onclick="changeSelectionColor('red')" type="button">Make Red</button>

You could implement a JavaScript function as follows:

function changeSelectionColor(colorname) {
 goRequest('MyView', 'color=' + colorname);
}

This makes use of the goRequest JavaScript function that is defined in GoWeb.js. It calls the
GoViewDataRenderer.HandleClientRequest method, which you might implement as:

public override void HandleClientRequest(String evtargs, Hashtable parameters) {
 String color = (String)parameters["color"];
 if (color != null) {
 Color c = FromString(color);
 this.View.StartTransaction();
 foreach (GoObject obj in this.View.Selection) {
 GoShape shape = obj as GoShape;
 if (shape != null) {

 shape.BrushColor = color;
 }
 }
 this.View.FinishTransaction("changed colors");
 }
}

Context Menus
For version 2.5 we have implemented context menu classes that are subsets of the same-named Windows
Forms classes. The GoDiagram Web versions, like their Windows Forms counterparts, are not Controls, but
are just objects that hold descriptive information.

Here’s an example that defines a context menu for a particular kind of node. In the node class you would
override GoObject.GetContextMenu to return a GoContextMenu:

 public override GoContextMenu GetContextMenu(GoView view) {
 GoContextMenu cm = new GoContextMenu(view);
 if (view.CanInsertObjects()) {
 cm.MenuItems.Add(new MenuItem("Add Port",
 new EventHandler(this.AddPort_Command)));
 }
 return cm;
 }

 private void AddPort_Command(Object sender, EventArgs e) {
 this.Document.StartTransaction();
 . . . create and Add a port . . .
 this.Document.FinishTransaction("Add Port");
 }

The GoViewDataRenderer will see that there is a GoContextMenu for your node and will send the
description of the context menu and its menu items to the browser. This information is used to construct a
DHTML context menu. A click on the menu item will invoke the AddPort_Command shown above, on the
server. The definition of the standard context menus uses DHTML and styles to describe the appearance and
behavior of the whole context menu, its items, and any separators.

There are a few declarations you need to provide in order for context menus to be rendered by the server and
constructed on the client. You need to set GoViewDataRenderer.ContextMenus to true and make sure
GoView.CssFile is not “none”. And if you don’t want the GoView to render the standard CSS definitions
each time, you need to make sure GoView.CssFile is set to “GoWeb.css” and make sure that file is in your
web site. You are of course free to use your own CSS definitions.

You can specify a default context menu, to be used for a context click that is not over an object where a
context menu is defined, by setting GoViewDataRenderer.DefaultContextMenu, or by overriding
GoViewDataRenderer.GetDefaultContextMenu if you want to generate it conditionally or dynamically
based on the state of the view or document. The event handlers can also be defined on your subclass of
GoViewDataRenderer, instead of on a Page, which is convenient for NoPost views when the Page might
not exist.

GoMenuItem has an additional constructor overload that lets you specify some JavaScript to run when that
menu item is clicked. This is useful for implementing context menu behavior that does not invoke code on
the server, but code running in the browser. Consider a node that overrides GetContextMenu:

 public override GoContextMenu GetContextMenu(GoView view) {
 if (view is GoOverview) return null;
 GoContextMenu cm = new GoContextMenu(view);
 cm.MenuItems.Add(new GoMenuItem("Rename", "EditLabel()"));
 return cm;
 }

The call to EditLabel is actually a call to a JavaScript function that the application defines. In your
JavaScript code you can use the global variable goInfo to get the JavaScript object corresponding to the
GoPartInfo corresponding to the object in that view.

Printing
Support for printing in web applications has always been problematic. Although we cannot provide good
printing support without having a DLL or Java Applet running on the client, we do provide a WebControl
that you might want to consider. The GoPrintView web control, when initialized to refer to a GoView,
renders as a number of large images that the user can print using the browser’s printing commands. This
provides a solution that will work on any browser.

The idea is that you define a separate ASPX page that consists of a GoPrintView control and whatever
additional descriptive information that you want, such as some text and/or a legend. The GoPrintView will
look at the View’s document and render as enough elements to cover the needed area. Hopefully the
images will be large enough to be moderately efficient in making use of the printable area of the page, and not
too large to cause any image to be clipped when printing. You can control the image size by setting the
GoPrintView.ImageWidth and ImageHeight properties.

You can also set the PageLimit and ViewScale properties to control how many images there are.

A typical usage would be to have a button in your ASPX page that called some JavaScript:

<button onClick="OpenPrintPage('MyView')" type="button">Print...</button>

function OpenPrintPage(id) {
 var img = goFindImg(id);
 if (img != null && img.goID != null) {
 open('PrintPage.aspx?GoView=' + img.goID, '');
 }
}

Note the use of the JavaScript function goFindImg, provided by GoWeb.js. This function takes an “id” and
finds the element with that “id”. The “goID” property provides the unique string identifying the
particular view in the session. This is what is needed to be able to find the right GoView on the server in
session state, so we pass it on to the PrintPage.aspx page as a query parameter.

You would define your PrintPage.aspx file to set the GoPrintView.ViewID when then Page is loaded:

 protected void Page_Load(object sender, System.EventArgs e) {
 // always get the intended GoView
 MyPrinter.ViewID = this.Request.Params["GoView"];
 }

Of course you can use other methods for communicating between the two pages, but this is one simple,
effective way. You might even be able to reuse your PrintPage.aspx file if you have other pages that
show diagrams that the user might want to print.

Static Images
The normal use of a GoView is interactive. However, you may be interested in generating images to be saved
on disk and served as image files.

You can do this at any time by constructing a GoView, initializing the GoDocument, calling
GoView.GetBitmap or GetBitmapFromCollection, and then saving the Bitmap as a file in the desired
ImageFormat. However, you will need to manage the naming, lifetime, and potential security risks of the
files that you write to disk.

ASP.NET AJAX
Microsoft has introduced extensions to ASP.NET 2.0 that support AJAX-style interaction. GoDiagram views
do work within UpdatePanels, as well as outside of them. Of course we still suggest that you set
GoView.NoPost to true, since that will permit the view’s handling of events and updating of the image
without any partial rendering on the server or any HTML DOM changes on the client.

Common Problems
If no image is displayed for your GoView or other view class, it means there was an error. The most common
cause of this error is forgetting to implement the image-generation mechanism. There are two choices,
controlled by the value of GoView.ImagePage:
• The default value, “GoWebImage.axd”, is more efficient, but it requires you to include the following lines

in your Web.config file:

<httpHandlers>
 <add verb="GET" path="GoWebImage.axd" type="Northwoods.GoWeb.GoWebImageHandler"/>
</httpHandlers>

• A value of “GoWebImage.aspx” requires you to include the GoWebImage.aspx file in your project.

This file consists entirely of one ASP.NET Page directive:

<%@ Page Inherits="Northwoods.GoWeb.GoWebImage" %>

 This file does not need any code-behind class.

The other most common reason for not seeing a view image is that cookies were not enabled by the browser.

A less common reason for no image in the browser is the inability to use session state. If you are not using
the InProc implementation of session state, the GoView, its GoDocument, and its GoObjects may be
serialized and deserialized. If you have extended any of these classes, be sure that everything is serializable.
Note that event handlers are not normally serializable, so any registered event handlers for GoView events
may be lost. It may be easiest to override the corresponding desired GoView.On… methods instead.

Another problem is that an image is visible, but the user cannot interact with it (assuming that
GoView.Enabled is true, of course). Usually this is caused by JavaScript code being disabled on the
browser.

However, another possible reason for a non-interactive image is that you have specified a value for
GoView.ScriptFile that is an invalid or inaccessible JavaScript file. The default value is “GoWeb.js”.
Normally one should just copy the GoWeb.js file into your web site, but if you forget, or if the reference
isn’t valid within the web site, or if the contents of the file have errors in them, there will be run-time errors
on the browser. Note also that the tilde character (“~”) is not supported as part of the file path – the file
reference should be a relative path.

If context menus are not appearing, be sure that the value of GoView.CssFile is not “none”, and that if is not
the empty string, that that CSS file actually exists on your web site and is accessible, with valid definitions
corresponding to the ones given in the standard GoWeb.css file.

If you have multiple GoViews on the same page, for example by having both a GoView and a GoPalette in
the same form, be sure that the values for GoView.ImagePage, GoView.ScriptFile, and GoView.CssFile are
respectively the same for all the controls, to avoid any potential inconsistencies or conflicts.

For maximal rendering performance, be sure to specify references for GoView.ScriptFile and (if using client-
side context menus) GoView.CssFile, typically to “GoWeb.js” and “GoWeb.css”, respectively.

For optimum image-generating performance, be sure to specify “GoWebImage.axd” as the value for
GoView.ImagePage, and define the HttpHandler in your web.config file. Be sure that any configured
HTTP handler for *.axd does not take precedence over this one; you can use a different name and file
extension if it is more convenient. In IIS7, you will need to either update the integrated
<system.webServer> <handlers> configuration section, or you will need to run your web app in
Classic ASP.NET integration mode by moving it to the Classic ASP.NET Application Pool.

For optimum data-rendering performance, set to false all the properties of GoWebDataRenderer for features
that you don’t need to use. For example, if you don’t use any client-side context menus, specify “none” for
the GoView.CssFile and set:
 goView1.DataRenderer.ContextMenus = false;

	GoDiagram Web for ASP.NET Web Forms Introduction
	Installation kit
	GoDiagram for ASP.NET Web Forms Files
	Initial Experiences
	Customizing Visual Studio
	Server Requirements
	Browser Requirements
	Licensing and Unlock Codes
	Requesting and Installing Unlock Codes with the License Mana
	Moving or Retiring Unlock Codes

	Deployment
	Appearance
	Rendering

	GoWebImageHandler produces an image by first getting a bitma
	Client-side Event Handling
	Server-side Event Handling
	Sessions and Initialization
	Session State for NoPost GoViews
	Customizing Client-side Behavior
	GoViewDataRenderer
	Handling Requests from the Client
	Context Menus
	Printing
	Static Images
	ASP.NET AJAX
	Common Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

